

Wensleydale

Mr Wensleydale. Query Python, get the AST as JSON.

Why?

The AST, or abstract syntax tree, is a set of data structures that describe
your python script. By exposing the AST to json, it can be treated as data,
which means it can be reported on.

Sample use cases include:

	Visualizing the routing tree of a web application.

	Visualizing a class hierarchy.

	Auditing large code bases using queries.

Support

Currently only Python 3.5 is supported.

Upcoming features:

	Recursive imports: Trace into calls.

	Pythonic paths: Use python dotted paths instead of file paths.

Contents

	Changes
	0.1.0

	Getting Started
	Installation

	Usage

	Understanding the AST

	Samples
	Test Code

	Finding Calls

	Finding Imports

	Contributors

Changes

0.1.0

Changes:

	Add script to convert AST to JSON.

Documentation:

	Add getting started.

	Add samples.

	Add contributors.

Getting Started

Installation

Install wensleydale using pip:

$ pip install wensleydale

Usage

Usage: wensleydale [OPTIONS] PATH

 Mr Wensleydale. Query Python, get the AST as JSON.

Options:
 --version Show the version and exit.
 --help Show this message and exit.

If we have the following script in a file called test.py:

print('Hello world!')

We can run wensleydale to get the AST, and use jq to pretty print the
result:

$ wensleydale test.py | jq
{
 "body": [
 {
 "col_offset": 0,
 "value": {
 "col_offset": 0,
 "args": [
 {
 "col_offset": 6,
 "s": "Hello world!",
 "lineno": 1,
 "classname": "Str"
 }
],
 "lineno": 1,
 "func": {
 "col_offset": 0,
 "lineno": 1,
 "id": "print",
 "ctx": {
 "classname": "Load"
 },
 "classname": "Name"
 },
 "keywords": [],
 "classname": "Call"
 },
 "lineno": 1,
 "classname": "Expr"
 }
],
 "classname": "Module"
}

Understanding the AST

The classname property of the reported dictionaries will map to the
Abstract Grammar [https://docs.python.org/3.5/library/ast.html#abstract-grammar] of Python’s syntax tree.

To get a full list of class names, using the following jq query:

$ wensleydale test.py | jq '.. | .classname?' | sort | uniq
"Module"
"Expr"
"Call"
"Str"
"Name"
"Load"

You can then select details of individual grammars using:

$ wensleydale test.py | jq '.. | select(.classname? == "Call")'
{
 "args": [
 {
 "col_offset": 6,
 "s": "Hello world!",
 "lineno": 1,
 "classname": "Str"
 }
],
 "func": {
 "id": "print",
 "col_offset": 0,
 "lineno": 1,
 "ctx": {
 "classname": "Load"
 },
 "classname": "Name"
 },
 "keywords": [],
 "col_offset": 0,
 "classname": "Call",
 "lineno": 1
}

Samples

We are always looking for useful queries. If you find one, please shoot us a
pull request:

Test Code

The samples in this document all query the following Python code:

import this as python

def main():
 '''
 Print Hello World!
 '''
 assert python
 print('Hello world!')

if __name__ == '__main__':
 main()

Finding Calls

To find the list of function calls in this code:

$ wensleydale test.py | jq '.. | select(.classname? == "Call") | {name: .func.id, lineno: .lineno}'
{
 "name": "print",
 "lineno": 9
}
{
 "name": "main",
 "lineno": 13
}

Finding Imports

To find the list of function calls in this code:

$ wensleydale test.py | jq '.. | select(.classname? == "Import") | [{name: .names[].name, alias: .names[].asname}]'
[
 {
 "name": "this",
 "alias": "python"
 }
]

Contributors

Wensleydale started during the PyCon 2017 sprints in Portland. Many thanks to
all those who contributed. It was surprising how quickly the tool came
together.

	Matthew Boehm

	George Hickman

	Efron Licht

	Rishi Ramraj

Index

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		Wensleydale

 		Changes

 		0.1.0

 		Getting Started

 		Installation

 		Usage

 		Understanding the AST

 		Samples

 		Test Code

 		Finding Calls

 		Finding Imports

 		Contributors

_static/file.png

_static/minus.png

_static/comment.png

_static/down-pressed.png

_static/logo.jpg

_static/plus.png

_static/ajax-loader.gif

_static/down.png

_static/up.png

_static/comment-close.png

_static/comment-bright.png

